Name:	Name:	
-------	-------	--

Maths Class:

Year 12

Mathematics Extension 1

HSC Course

(Assessment 4)

TRIAL HSC

August, 2018

Time allowed: 120 minutes + 5 minutes reading time

General Instructions:

- Marks for each question are indicated on the question.
- Approved calculators may be used
- All necessary working should be shown
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided
- A NESA reference sheet is provided for use in this examination

Section 1 Multiple Choice

10 Marks

Questions 1-10

Allow approximately 15 minutes

Section II Questions 11 – 14 60 Marks

Allow 1 hour 45 minutes for this section

Section 1

10 marks

Attempt questions 1 - 10

Allow about 15 minutes for this section.

Use the multiple choice answer sheet located in your answer booklet.

- 1. The acute angle between the two lines 3x + y 1 = 0 and 4x 6y = 5, is closest to;
 - A. 15°
 - B. 38°
 - C. 52°
 - D. 75°
- 2. The point P divides the interval AB in the ratio 3:5.

In what external ratio does A divide the interval PB?

- A. 3:8
- B. 8:3
- C. 5:8
- D. 8:5
- 3. In the figure below, AB is the diameter of the circle with radius 8 cm. What is the length of the minor arc BC?
 - A. $\frac{12\pi}{5}$ cm
 - B. $\frac{8\pi}{5}cm$
 - c. $\frac{24\pi}{5}$ cm
 - D. $\frac{24}{5}$ cm

4. When P(x) is divided by $x^2 + 5x - 6$, the remainder is the polynomial R(x) = 2x - 5.

What is the remainder when P(x) is divided by (x-1)?

- A. -7
- B. -6
- C. 7
- D. -3
- 5. A particle moving with acceleration $\ddot{x} = 12\sin 3t \ m / s^2$, starts at rest at x = 4. What is the maximum speed of the particle?
 - A. 0 m/s
 - B. 4 m/s
 - C. 8 m/s
 - D. 12 m/s
- 6. If $f(x) = x^2 2x$ then for $x \ge 1$, $y = f^{-1}(x)$ has the equation?
 - A. $f^{-1}(x) = (x+1)$
 - B. $f^{-1}(x) = 1 \sqrt{x+1}$
 - C. $f^{-1}(x) = 1 + \sqrt{x+1}$
 - D. $f^{-1}(x) = y^2 2y$
- 7. $\frac{d}{dx} \left[\cos^{-1} \left(\frac{1}{x} \right) \right]$ is;
 - A. $\frac{-1}{\sqrt{x^2-1}}$
 - B. $\frac{-1}{x\sqrt{x^2-1}}$
 - $C. \quad \frac{1}{\sqrt{x^2 1}}$
 - $D. \quad \frac{1}{x\sqrt{x^2-1}}$

8.
$$\int_{0}^{1} 5^{2x} dx$$
 is;

- A. 12ln5
- B. $\frac{12}{\ln 5}$
- c. $\frac{24}{\ln 5}$
- D. 24ln5
- 9. How many solutions does the equation $\sin x = \sin 2x$ have in the domain, $0 < x < 2\pi$?
 - A. 2
 - B. 3
 - C. 4
 - D. 5
- 10. A glass of water with a temperature of 4 degrees is placed in a room with a temperature of 18 degrees. After 5 minutes the temperature of the water has risen by 6 degrees.

The equation satisfying this situation is;

A.
$$T = 18 + 14e^{-\frac{t}{5}\ln\frac{4}{7}}$$

B.
$$T = 18 - 4e^{\frac{t}{5}\ln 2}$$

C.
$$T = 18 - 14e^{\frac{t}{5}\ln\frac{4}{7}}$$

D.
$$T = 18 - 14e^{\frac{t}{5}\ln\frac{6}{7}}$$

End of Section 1

Section 11

60 marks

Attempt questions 11-14

Allow about 1 hour and 45 minutes for this section.

Start each question at the TOP of a NEW page in your answer booklet

In Questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11

15 marks

a. Evaluate
$$\lim_{x \to 0} \frac{1 - \cos 2x}{x^2}$$

2

b. Solve
$$\frac{x-1}{x+2} \le 4$$

3

c. Find,

i.
$$\frac{d}{dx}(4\sin^{-1}3x)$$

2

ii.
$$\int (\cos^2 3x) dx$$

2

d. Give the exact value of;

$$\int_{0.5}^{0.5} \frac{2}{1+4x^2} dx$$

2

e. Show that
$$\int_{0}^{\frac{\pi}{4}} (\tan^2 x + \tan x + 1) dx = 1 + \ln \sqrt{2}$$

2

f. Write down the general solution to

$$\sin 2x = -\frac{1}{2}$$

2

START THIS QUESTION AT THE TOP OF A NEW PAGE IN THE ANSWER BOOKLET

Question 12

15 marks

a. The equation $4x^3 - 8x + 1 = 0$ has roots α , β and γ What is the value of

i. $\alpha\beta\gamma$

ii.
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$

b. Triangle ABC is inscribed in a circle. The tangent to the circle at A meets the secant BC at D $\angle ABC = \alpha$ and $\angle ADB = 90^{\circ} - 2\alpha$.

- i. Find an expression, in terms of α for $\angle ACB$, giving reasons
- ii. Show that BC is a diameter of the circle.
- c. Use the substitution u = x+1 to evaluate $\int_{0}^{15} \frac{x}{\sqrt{x+1}} dx$ 3
- d. A particle moving in Simple Harmonic motion obeys the rule $x = A\cos(2t + \alpha)$, where α is acute. Initially, the particle is 6 metres to the left of the origin, travelling with a velocity of $12\sqrt{3}$ m/s.
 - i. Find the period of the particle's motion.
 - ii. Find the values of A and α

1

iii. When does the particle first reach the centre of motion?

Question 13

15 marks

a. The points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola with equation $x^2 = 4ay$.

- i. Show that the chord PQ has equation 2y = (p+q)x-2apq
- ii. The chord PQ crosses the x axis at (-2a, 0).

Show that p + q = -pq

iii. Hence, find the locus of *M*, the midpoint of *PQ*.

- b. A particle is moving along the x- axis with velocity $v=\sqrt{8x-x^2}$ m/s.
 - i. Find the acceleration of the particle at displacement 3 m.
 - ii. By considering the velocity and acceleration of the particle, describe the motion of the particle at x=3

2

1

3

2

2

1

- c. Consider the function $f(x) = e^x e^{-x}$
 - i. Show that y = f(x) is increasing for all values of x

ii. Show that $f^{-1}(x) = \ln \left[\frac{\sqrt{x^2 + 4} + x}{2} \right]$ and state its domain.

iii. Hence, or otherwise solve the equation $e^x - e^{-x} = 3$

START THIS QUESTION AT THE TOP OF A NEW PAGE IN THE ANSWER BOOKLET

Question 14 15 marks

a. Use Mathematical Induction to show that for all positive integers $n \ge 1$:

$$\frac{3}{1\times2\times2^{1}} + \frac{4}{2\times3\times2^{2}} + \dots + \frac{n+2}{n(n+1)\times2^{n}} = 1 - \frac{1}{(n+1)\times2^{n}}$$

b. A circle is inscribed in a square so that the sides of the squares are tangents to the circle. The circumference of the circle is increasing at a constant rate of 2 m/s, causing the sides of the square to increase, so that the sides remain touching as tangents.

Find the rate at which the area of the square is increasing when its' perimeter is 16cm.

3

c. A ball rolls off a table with a speed of 0.6 m/s. The table is 1.02m high.

i. Ignoring air resistance, setting the origin at ground level, gravity as 10 $\,m/\,s^2$, Show that the trajectory of the ball obeys the rule, $\,y$ =1.02 $-\frac{125}{9}x^2$

2

ii. Determine the point at which the ball hits the floor and find its speed at the instant of impact.

2

iii. Find the angle, θ , between the path of the ball and the vertical line drawn through the point of impact.

1

iv. Suppose the ball rebounds from the floor at the same angle with which it hits the floor, but loses 20% of its speed due to energy absorbed by the ball on impact.

Where does the ball strike the floor for the second bounce, measured along the horizontal, from the edge of the table?

3

Year 12 - 2018 - Trial Extension I.... Suggested Solutions

Suggested Solutions				
Section1				
1. D	6	. C		
2. A	, , 7	- D		
3. C		3. B		
4. D		9. B		
5. C		ĺρ C		
Solutions to MIC				
1. $3x+y-1=0$		6.f(x)	$= \chi^2 - 2\chi \chi \chi = 1$	
M1 = -3.		f-1(x	$1 \rightarrow 1 + \sqrt{x+1} \boxed{C}$	
42 = 5+64 M	2= 2/3	2=42	$y = 1 + \sqrt{x + 1}$	
tan = 1 M1 - M2		7. d/d:	$x \left[\cos^{-1}(1/x) \right]$	
1+ M, M2			$\frac{-1}{1^2 - (1/x)^2} \times \frac{-1}{x^2}$	
Ø ÷ 75°		J	$1^2 - (1/2)^2$ χ^2	
2. 3 5 PA :	АВ	=	2 /x² - 1 D	
A P = 3 % 8 AT		8. (1	$5^{2x} dx = \int_{0}^{1} e^{\ln 5^{2x}} dx$ $= 5^{2x} 7^{1}$	
3. (= (0 (pin))	$= 5^{2x}$	
= 8 × 108 TT			24550	
/68° \ 180'			$=5^2-5^\circ=24$	
c B = 2411	[0]		2125 B	
4. $P(x) = (x^2 + 5x - 6)Q(x)$			= 12/Ln5	
$P(i) = 0 \times Q(i) + 2(i) - 5$		1 .	chi domain doesnot	
= -3	[0]	1	e 0 € 2 π 3 sol	
5 x = 12 sin 3t	70		B	
i = SIZSin3t dt	t=0	10. T=	B+Aekt	
$V = -4\cos 3t + C$	V=0	4:	= 18 + Ae° A = - 14	
$0 = -4 \times \cos 0 + c_1$	C1=4	Now	10 = 18 - 14 ek(5)	
V = 4 - 4003t			k= 1/5 Ln 4/7	
$= -4\cos 3t + 4$	0 EV & 8		0% [C]	
-4 to 4 °		7		

•	
Section II	$\left(\frac{1}{2}\right)$ $\left(\frac{1}{2}\left(1+\cos 6x\right)dx$.
Question 11	$= \frac{1}{2} \left[2 + \frac{1}{8} \sin 6x \right] + C$
a) lim 1-Cos2x	2 6
·×→0 χ²	015
$= /im (1-(1-2sin^2x))$	$d. \int \frac{2}{1+4x^2} dx$
x->0 x2	= 2(0.5)
= 11m. 28/n2x	J 0 4 (1/4 + x2)
= 2	$= \frac{1}{2} \int_{0}^{0.5} \frac{1}{(\frac{1}{2})^{2} + \chi^{2}} d\chi$
b) $x-1 \le 4 (x \ne -2)$	$= \frac{1}{2} \times \frac{1}{2} \tan^{-1}(2x)$
X +2	$= \left[\frac{\tan^2 2x}{\cos^2 x} \right]^{0.5}$
$(x-1)(x+2) \leq 4(x+2)^2$	= tan' 1 - tan' 0
$(x-1)(x+2)-4(x+2)^{2} \le 0$	= 7/4 - 0
$(x+2)[x-1-4x-8] \le 0$	$=\pi/4$
$\frac{(\chi+2)(-3\chi-9)\leq 0}{3(\pi+2)(\pi+2)(0)}$	e) 5 (tan'x + tenx +1)
$-3(x+2)(x+3) \leq 0$	$\int \frac{\sin x}{\sec^2 x + \frac{\sin x}{\cos x}} dx$
73 3	$= \tan x + -\ln(\cos x) \int_{-\pi/4}^{\pi/4}$
1° × ≤-3 or ×>-2	$= + \cos^{\frac{\pi}{4}} + - \ln(\cos^{\frac{\pi}{4}}) - (\tan 0)$
c) d/dx (4 sin 1 3x)	- ln cosa)
$10 = 4 \times 1 \times 3$	= 1 - en (1/12) - (0-1/1)
$\sqrt{1-(3x)^2}$	=1-ln(1/52)
= 12	=1+lnJ2
$\sqrt{1-9x^2}$	f) 20= NTT+(-i) Sin'(-1/2)
	$\theta = \frac{n\pi}{2} - (-i)^n \left(\frac{\pi}{12}\right) d$

Question 12	
L ACCULOTT TO	c) u=x+1 x=15 u=16
a) a=4 b=0 c=-8 d=1	x=0 u=
1. × B8 = -d/a	= (16 u-1 du du=dx
= -1/4	JI Vu
11 L 1 + 1 - XB+XX + BX	$=\int_{0}^{16} \sqrt{u} - u^{-1/2} du$
11. T+T+1 = xB+xx+bx	
= -8/4 = -1/4	$= \frac{2}{3} u^{3/2} - 2 u^{1/2} $
= 8 ·	$= \frac{2}{3}(16)^{3/2} - 2\sqrt{16} - (\frac{2}{3} - 2)$
b) 90-2× D	= 36
	d) $\chi = A \cos(2t + \lambda)$
	+=0
g /angle between a	x = -6 0
1 and - 1 and I tangent and a	$V = 12\sqrt{3}$
= d angle in the alternate segment	1. Period = 2 T/n = T
Now	11. $t=0 x=-6$
LACB=LCAD + LADC	-6 = A Cos & -0
$= \lambda + (90-2\alpha)$	V = -2A Sin(2t+x)
= 90-2	E=0 V=1253
(exterior angle of DACD).	12√3 = -2ASIN &
11. NOW DABC	-653 = ASINA -(2)
90-2+2+LBAC=180°	$\bigcirc \bigcirc $
(angle sum)	d = T/3
LBAC = 90°	Now -6= A COST/3
and BC is the diameter of	A = -12
circle as angle in the semi- circle is 90°.	in) centre x=0@x=0
	$0 = -12 (\cos(2t + T/3))$
	2t + T/3 = T/2 (Ist time) t = T/12 (t) 0

Question 13. b) $V = \sqrt{8x - x^2}$ m/s. a) $M\rho_Q = \alpha \rho^2 - \alpha q^2$ $1. \mathcal{X} = \frac{d}{dx} \left(\frac{1}{2} \sqrt{2} \right)$ = d/dx 1/2(8x -x2) = a (p+q) (p-q) 2a(p-q) Mpa = P+9/2 $^{\circ}$ x = 3 $x = \frac{1}{3}$ = y-ap2 = p+9 (x-2ap) $2y - 2\alpha p^2 = (p+q)x - 2\alpha p^2 - 2\alpha pq$ 11. at x=3 $V=\sqrt{15}$ m/s 2y = (p+q)x - 2apq2° = 1 m/s2 00 x >0 & V>0 means 11) 0 = -2a(p+q) -2apq the particle is moving to the right (tre direction) 2a(p+q) = -2apq speeding up. p+9=-p9 141) Midpt $M = \beta a \rho + 2 a q$, $\alpha \rho^2 + a q^2$ (c) $f(x) = e^x - e^{-x}$ 1. $f'(x) = e^{x} - e^{-x}$ = $e^{x} + e^{-x}$ $x = \alpha(p+q)$ $y = \alpha(p^2+q^2)$ as e > > 0 & e > > > 0 $\frac{\alpha}{a} = P + 9$ and $pq = -\frac{\alpha}{a}$ from (ii) for all x $20 \left| \frac{2y}{\alpha} = (p+q)^2 - 2pq \right|$ f'(x)>o for all x and f(x) is increasing $\frac{\partial y}{\partial x} = \left(\frac{x}{2}\right)^2 - 2\left(-\frac{x}{2}\right)$ for all X. 2ay = x2 + 2ax next pg either $\frac{\partial R}{\partial x} y = \frac{\chi^2}{20} + \chi$

Finding Inverse	
	111. $e^{x} - e^{-x} = 3$
x=ey-e-4	means (2,4)
$x = e^{y} - 1$	Į į
еч	(x,3) into
e ^y χ=e ^{2y} -1.	f(x)
$e^{2y} - e^{4}x - 1 = 0$	or (3, 4) into
	$= f^{-1}(x)$
Solve as a quadratic	
Lin ey	\$ (000 to In 19+4 +3]
$\frac{1}{2}$ $\frac{1}$	
	1 1 - l = [[13 + 3]
$e^{y} = x + \sqrt{x^2 + 4}$	2 Need X equals
p a	laternatively
3	e^{x} - $\frac{1}{2}e^{x}$ = 3
***	$e^{2x} - 3e^{x} - 1 = 0$
Making	$e^{\circ} = 3 + \sqrt{9 - 4(1)(-1)}$
$P = V \propto V$	2 × I
tome y=+ (x1 x/0 y ER	$e^{x} = 3 \pm \sqrt{13}$
which means	2
$e^{4} = x + \sqrt{x^{2} + 4}$	as ex>0 0° ex=3+113
2	. 2
OR f-1(x)=10 x+5x2+4	or x= en 3+513
D: all real x	

Question 14.
a) Test n=1
$LHS = 3$ $RHS = 1 - \frac{1}{(1+1)} \times 2^{1}$
$1 \times 2 \times 2 = 1 - \frac{1}{4}$
$=\frac{3}{4}$ $=\frac{3}{4}$
00 LHS=RHS and the statement is true for n=1
Assume true for n=K
$\frac{18 3}{1 \times 2 \times 2^{1}} \frac{4}{2 \times 3 \times 2^{2}} \frac{1}{1 \times 2 \times 2^{1}} \frac{1}{2 \times 3 \times 2^{2}} \frac{1}{1 \times 2 \times 2^{1}} \frac{1}{2 \times 3 \times 2^{2}} \frac{1}{1 \times 2 \times 2^{1}} \frac{1}{1 \times 2^{1}} \frac{1}{$
Prove true for n=K+1
Ainto Prove:
$\frac{3}{1\times2\times2^{1}} + \frac{4}{2\times3\times2^{2}} + \dots + \frac{K+2}{K(K+1)\cdot2^{1}} + \frac{K+1+2}{(K+1)(K+2)\cdot2^{1}} = -(K+2)\cdot2^{1} $
$\frac{LHS = 3}{1 \times 2 \times 2^{l}} \frac{1 \times 2 \times 2^{l}}{\kappa(k+i) \cdot 2^{k}} \frac{k+3}{(k+i)(k+2) \cdot 2^{k+1}}$
= - + K+3 (using the
$(K+1).2^k$ $(K+1)(K+2).2^{k+1}$ essumption)
$=1-\begin{bmatrix}1 & -K+3\end{bmatrix}$
$(K+i), 2^{l_{2}}$ $(K+i)(K+2), 2^{k+1}$
$= \left[- \left[2(k+2) - (k+3) \right] \right]$
(K+1)(K+2).2K+1
= - 2K+4-K-3
(R+i)(K+2). 2K+i of IF the statement is
= 1 - [K+1] true for N=K it is also
(K+1)(K+2).2K+1 true for n=K+1. As it is true for n=1 it
= - is also true for n=2,3,-
(K+2)2k+1 hence true all positive
= RHS integer n.

.

Question 14 (con't) b $\frac{dC = 2m/S}{dt} = 200 \text{cm/s}$ $\frac{converts}{vnixs} : \chi = 4 \text{cm}.$ $\frac{vnixs}{vnixs} = 2\pi r$ $= 2\pi r$ x dc = 2m/s α =2TT, X/2 $= \pi x$ $= 2x \cdot \left[\frac{dx}{dc} \cdot \frac{dc}{dt} \right]$ $\frac{dc}{dx} = \pi$ doc/dc=/ = 3 x x x T x 500 = 2×4 × 1/4 × 200 = 1600 cm2/s. or 0.16 m2/s % = O 4 = -10 X=0y = 1.02 $\dot{x} = 0.6\cos \dot{y} = -10t$ x = 0 = 0.6 $y = -5t^2$ V = 0.6 x = 0.6t 11.00 +1.02 00 y=-St2 +1.02 Nau X = t $\frac{4 = -2(\frac{x}{0.6})^{2} + 1.02}{4 = 1.02 - 125x^{2}}$ $\frac{125x^2 = 1.02}{9}$ ii) 4=0 = 27cm to the right of the table

When x=0270998m (2-	7cm)		
then			
0.6t = 0.270998	Partiv con't		
t=0,45166	ÿ=0 ÿ=-10		
speed @ impact	$\ddot{y} = 0$ $\ddot{y} = -10$ $\ddot{x} = 3.68\cos 82.5^{\circ}$ $\ddot{y} = -10t +$		
x=0.6	· X = 3.68 cos 82.5 t+ 0.27 3.68 Sine 1.5		
9 = -10t	$y = -5t^2 + 3.6851/82.5$		
V 0 = -4.5166	Now set u=0		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0=t[3.68SIN82.5°-5t]		
Pythagoras			
$V = \sqrt{0.6^2 + (-4.5166.)^2}$	t=0t = 3.68sin82.5°		
= 4.6 m/s.	(stert) 5		
	t = 0.7297		
111) use above diagram to	x=3.68cos82.5x0.7297.		
calculate o	+ 0.27		
tan 0 = 0.6	= 0.6205		
4.5166	= 0.62m		
0 = 7.5° (1dp).	(62 cm to the right		
IV. NOW	of the foot of		
V=0.8x			
(5) = 3.6	08 m/s		
82.5°			
X=0,27			
t=0			
y = 0			

Extension 1 Examiner's Comments-TRIAL HSC 2018

Question 11

- a) needed to write in terms of $\frac{\sin x}{x}$ for the limit
- b) draw a diagram to help
- c) i. inccorect use of chain rule
- c) ii. Neede to use cos double angle formula to integrate
- d) 4 is 2^2 and $\frac{1}{4}$ is $\left(\frac{1}{2}\right)^2$; learn the standard integral formats of known inverse trig functions
- e) Needed to be shown clearly
- f) Use the rule that is on the reference sheet and understand that the general solution formula is used as soon as the inverse sin is applied (see solution)

Question 12

- b(i) A of boys did not use correct terminology for "Alternate segment theorem" reason.
- (ii) Reason for "Angle sum of a triangle" had to be stated, otherwise mark deducted.
- c) Errors occurred through transcription or carelessness. Ours is a careful subject so BE CAREFUL!
- d(ii) When solving for A and alpha, half of the cohort didn't realise that x=6 to the left meant x=-6. They also assumed A is amplitude and had to be positive. Learn from this one!!
 - (iii) No marks deducted for carry through error.

Question 13

- (b) (i) a lot of students did not use the chain rule correctly. Some of them did not use $\ddot{x} = \frac{1}{2}v^2$
- (b) (ii) the question says "by considering the velocity and acceleration of the particle" but some students did not consider the velocity and acceleration when describing the motion of the particle.
- (c) (ii) some students did not state the domain

Question 14

- a) Poor algebraic skills led to many students not obtaining full mark.
- b) Students needed to convert units in the questions. They also needed to show that some form of calculus (chain rule) to obtain marks.
- ci) The question was a show that, so students needed to derive the formulas.
- ciii)The ball hits the floor when y=0. Students were able to find the x value yet finding the speed caused many problems for the majority.
- ciii) Many candidates had problems finding the angle.
- civ) POORLY completed question. Many variations for the angle. Students could not find when the ball hit the floor the 2nd time.